Managing Soils for Improved Pasture

Jonathan Deenik, PhD Department of Tropical Plant and Soil Sciences University of Hawaii Guam Grazing and Livestock Management Workshop January 27-30, 2010

Outline

- Water
- Organic matter
- Nitrogen
 - Mineralization
 - Biological nitrogen fixation
 - Fertilization
- Phosphorus

Factors Affecting Pasture Productivity

http://attra.ncat.org/attra-pub/nutrientcycling.html

Water

- 1. Availability
 - Shallow soils have low water holding capacity
 - Sandy soils have low water holding capacity
- 2. Infiltration
 - Good infiltration minimizes erosion and runoff
 - Maintaining good cover of the ground (plant or residue) increases infiltration
- 3. Compaction
 - Compacted soils hold less water
 - Compacted soils inhibit water infiltration
 - Compacted soils are prone to erosion and water run-off

Significance of Soil Organic Matter

The Nitrogen Cycle

Inputs

- Biological N fixation
- Plant litter
- Manures
- Transformations
 - Mineralization& immobilization
 - Denitrification
- Losses
 - $-NO_3^-$ leaching
 - NH₄⁺ volatiloization

http://attra.ncat.org/attra-pub/nutrientcycling.html

Nitrogen Mineralization

Sources: Deenik (2007), Motavalli et al. (1998), Umkovich et al. (1998)

Landuse & Nitrogen Mineralization

Sources: Deenik (2007), Motavalli et al. (1998)

Biological Nitrogen Fixation

 Conversion of atmospheric N₂ gas into ammonia by soil bacteria and legume symbiosis

BNF & Nitrogen Inputs

- Legume provides sufficient N for good forage growth
- In acid soils of tropics liming and P fertilizer inputs are needed to establish legume

Source: White et al. (2000)

Mixed Pastures & Animal Growth

- Pastures containing grass/legume mix increase animal growth rate
- Gains are attained during dry season

Urea Application & Grass Production

Observations Kauai, 1 month post treatment

Observations Kauai, 3 months post treatment

Cattle preferentially grazed high N plots

Evidence for Selective Grazing

Problems with Urea Use

- 1. Urea must be imported and cost may be prohibitive.
- 2. Urea applied to surface of alkaline soils developed on limestone parent material susceptible to volatilization (gaseous loss as NH₃). Volatilization can be reduced by applying urea to wet soils
- 3. Prolonged use can acidify soil

The Phosphorus Cycle

http://attra.ncat.org/attra-pub/nutrientcycling.html#phosphorus_cycle.html

Inputs

- plant and animal residues/manure
- fertilizers
- Transformations
 - mineralization&
 immobilization
 - P-fixation
- Losses
 - erosion
 - run-off

Mycorrhizae and P Availability

- Symbiotic relationship between fungi and plant roots
- Fungal hyphae extend root area
- Increase P uptake, increase tolerance to drought
- Facilitate transfer of N from legumes to grasses

P Fertilization

P fertilization increases biomass production in

tropical acid soils

Single application of P has

legume grass

Photo: B. Gavenda

S Maximuzed r

Ne elitecis

Soil Test Results

Soil test results for surface soils from pastures on Saipan

Soil	рН	TN	OC	Р	К	Са	Mg	
	%				ppm			
Chinen	7.7	0.56	16.22	50	190	7714	332	
	7.8	0.74	17.20	54	188	8482	334	
	7.8	0.57	15.66	64	78	7726	284	
	7.7	0.84	13.75	56	130	10944	344	
	7.1	0.55	5.35	50	646	7026	596	
	7.4	0.56	5.81	40	228	6750	628	

- Soils high in organic matter and total (TN). Difficult to determine N availability
- Soils high in P, Ca and Mg, but show low K
- Need to manage for N and K to boost productivity

Soil Test Results

Soil test results for surface soils from pastures and Forest on Tinian

Landuse	Soil	рΗ	ΤN	OC	Ρ	K	Ca	Mg	
			%			ppm			
	1	7.8	0.50	8.43	39	52	8442	602	
Docturo A	2	7.7	0.45	5.41	17	86	7016	586	
Pasture A	3	7.0	0.44	4.75	15	98	4520	566	
	4	7.5	0.56	7.05	20	170	7880	522	
	1	7.8	0.40	4.86	54	140	7586	428	
Dooturo P	2	7.4	0.45	4.58	38	76	5256	624	
Pasiule D	3	7.8	0.39	5.85	31	48	8572	386	
	4	6.6	0.45	4.56	31	94	3862	664	
	1	7.1	0.51	5.00	53	106	5146	680	
Foroat	2	7.7	0.48	5.17	49	138	7378	548	
Folest	3	6.9	0.66	6.95	105	222	6082	718	
	4	6.8	0.46	5.10	10	98	4426	684	

Soil Test Results

Soil test results for Akina surface soils from Guam

Soil	pН	ΤN	OC	P*	K	Ca	Mg
		%			ppm		
	5.0	0.39	5.04	NA	195	680	792
Oxisol	5.3	0.30	4.39	NA	234	700	1104
	5.2	NA	4.10	NA	117	680	900

- Soils moderately high in organic matter and total (TN). Difficult to determine N availability
- Soils very acidic and low in Ca and K
- Need to manage for pH, Ca, K and N to boost productivity